If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-43x=0
a = 25; b = -43; c = 0;
Δ = b2-4ac
Δ = -432-4·25·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-43}{2*25}=\frac{0}{50} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+43}{2*25}=\frac{86}{50} =1+18/25 $
| -2x-(-8x)+5+3=0 | | 5x+4/7-3x-3/7=6/7 | | -2x-(-8)+5+3=0 | | 32-9x=11+12x | | 2/6w-2=10 | | 180-6v=160-8v | | 180+6v=160+8v | | W^4+18w^2+81=0 | | 2n-8/n^2=1/n^2-4/n | | 6x+8=x+12 | | 2x^2-25x-450=0 | | 6x+8=x+1 | | 2x^2-25-450=0 | | -(8-2x)(6-2x)=24 | | 2q–5=5 | | -4-4x=-2x-8 | | m-4m+3=21 | | -7+17p=17p–7 | | 1/4*(n+4)=10 | | -5x-7x=4 | | -2x+19+4x+19=-2 | | 7-6y=26 | | 8x-9=2x-27 | | .33x+2=1.25 | | -10x+23+12x+23=4 | | 12t–10t=20 | | 1/4(n+4)=10 | | 2(x-3)+4x=-7+3x+10 | | -4+2/9+2x-2/9=1/9 | | W^2+30w-8800=0 | | 2(x/7+2)=6 | | 65-3x=14 |